1\

¢

MANUAL

1978 by Ohio Scientific

Inc

%Q*m D 250K €%

smmos

/

P 3589 —

|
— |

o 5~
[Y

SHevi®

oE
Yo 9999

N

/

A

/

1€9¢

June 1978

e —

NOTICE

Changes from 0S-65U Version 1.0 to Version 1.1 that may

Affect Compatibility

The following utility programs have changed and should be used
in preference to previous versions. Program and data file formats

are unchanged.

BEXEC*
CREATE
PACKER
COPIER
COPYFI
The line printer, device #5, now has software page control.

This feature may be disabled with a POKE 14457,66,

Flags 20-23 for disk checksum checking and input escape

were changed to 19-22 for compatibility with other flags.

The access rights on all utility programs was changed to
WRITE, i.e., they are RUN ONLY without giving the proper

password.

A special version of 0S8-65U is available with a P after the
version number. In this version, the keyboard input,
device #2, supports the polled keyboard not the older model
standard keyboard. Also, the video output, device #2,

supports the 540 video board only and not the 440 and 540,

NOTE: Please carefully study the entire manual before
proceeding to actually using the accompanying diskette.

Table of Contents‘

Version 1.1 Release Notice 3
License Terms 5
License Form 6
Introduction 7
System Initialization g
CD-7Y4 Initialization 11
How to Customize Your System 1?2
File System Commands 14
System Command 15
Data File Commands 16
Program File Commands 21
BASIC Extensions 22
Flag Commands 24
Utility Programs

CREATE 286
DELETE : 23
PACKER 28
COPIER - 30
RENAME 34
FPRINT 36
COPYFI < 39
FDUMP) 40
CHANGE 42
LOAD32/4 45
ReTference Tables

Device Numbers 48
Memory Locations 53
I'loppy Disk Error Codes 54
Hard Disk Error Codes 55
File Error Codes 56
Creating Additional Systems on a CD-7Y 57
Guide to the Accompanying 0S-65U Diskette
DIREC*, BEXEC*, BUS1, BUS?, and BUS3 58
PHONE 60
LABLE . 61
Actual Listings

0S~-65U Directory 64
BEXEC™* 65
BUS1 66
BUS2 67
BUS3 ‘ 68
PHONE 69
LABLE 70
GETTING Started With 0S-65U 73
User Notes on 08-65U » 75

-/

Appendices

User Frogrammed Disk I/0

SASIC-DOS Interface Subroutine

Passwords

Changing Size and Location of the Directory
Level 2/3 Versions of 0S-65U

78
80
83
84
g7

0S-65U V1.1, Level I Release Notice

Version 1.1 of 08~65U is the first official release. It

contains a number of enhancements that provide additional

new features as well as improvements in existing functions.

New features include:

1.

2).

3).

b).

5).

6).

Multi-terminal operation with up to 16 additional terminals
and a timesharing executive program, MULTI, that provides
program file load, save and print functions to up to 16
intelligent terminals (2P's and 8P's) connected to a host

computer running 0S-65U. The Multi-Terminal Operations

ooty

Manual is available separately.
New utility programs:
RENAME for changing filenames and passwords.

FPRINT prints cr displays entries in a sequential or random
file. :

COPYFI for high speed copying from one file to another.
FDUMP prints or displays blocks of data from a file.
CHANGE for changing bytes on disk memory.

LOAD32 and LOAD48 for installing machine language routines
as part of BASIC programs,

A BASIC statement trace that displays each source line of

a BASIC program as it is executed.

The ability for BASIC programs to, optionally, retain control
for‘programming end of file action.,

The ability for BASIC programs to, optionally, transfer
control to line 50000 for handling of any disk I/0 errors.
Line printer page control for automatic paging of line

printer output.

7).

And

1.

2).

3).

4).

5).

6).

The ability to limit HHO/SQO and serial terminal output

to a page (screen) at a time. |
1

the following improvements in existing features are provided:

The disk directory is always reloaded by OPLN and LOAD

commands to permit diskettes to be interchanged in a drive

without rebooting or running the DIR program.

Floppy disk drivers now permit increased tolerances on

disk drives, thus increasing overall system reliability.

The RUN command now permits specification of a starting

line number when a filename is specified, e.g., RUN"ACCNTS",50.

More compfehensive file access rights, including run—only,

are provided. |

The NEW command clears the name of the last LOADed file,

thus preventing use of SAVE without a filename after NEW

has been typed. (

The keyboard driver has been upgraded to support the polled

keyboafd used with 540 video boards. This dis available in

a special version of 0S-65U with a P after the version
number. The Polled Keyboard PROM is required at $ID@®

to support the polled keyboard.

License terms for 0S-~65U

Ohio Scientific's 0S-65U is copyrighted by Ohio
Scientific, Inc. and Microsoft, Inc. Any duplication
or redistribution of other than original factory copies
of 0S-65U other than for use on an individual computer
system is strictly prohibited. Ohio Scientific dealers
and representatives are authorized only to restore destroyed
copies of 0S-65U on company-provided and serialized diskettes,
which contain the Ohio Scientific label and the Microsoft
copyright, and clearly specify 0S-65U Version 1.0 or higher.
Copying and redistribution of 0S-65U on any medium other than
factory-generated 0S-65U diskettes is strictly prohibited
and in violation of copyright laws. Each diskette containing
0S-65U bears a unique serial number which will be maintained
on file at Ohio Scientific, both to protect the software,
and to serve as a means of notifying software package owners
of updates in the form of corrections of any bugs or improve-

ments that may occur.

Purchasing one copy of 0S-65U entitles the user to utilize
0S-65U on one system only. The serial number of the computer
as well as the license number of the software are to be
registered at Ohio Scientific, Inc. The license number is
needed to obtain assistance and updates to 0S-65U as well as
to purchase applications software from dealers based on

05~-65U.

WARRANTY
There is no warranty, either expressed or implied, for

0S-65U. It has been extensively tested at Ohio Scientific
with a battery of standard library programs, and is believed
to be reasonably error-free. We do not guarantee the programs
in any fashion, nor do we guarantee that all bugs or problems
that may occur will be fixed. We will, however, under normal
circumstances make an attempt to help you with any problems
that may occur, and intend to support this software package
whenever possible, If you have any problems with the software
or think you have found a bug, please contact us. In the

case of any complicated bug, please include a documented
example of the problem.

0S-65U License Form

R,

0S-65U License Number

Factory Issue Date

9-19-7&

Diskette Serial Numbers

System Serial Number

L5327

232§

Keep This For Your Records

Introduction

0S-65U is a nine digit BASIC language system which includes
a complete named file disk operating system for floppy disks and
for large capacity, hard surface disks. The file system supports
both data and program files.

Data files appear to the user as a single contiguous block
of data bytes that can be read or written sequentially or
randomly. High speed file searches are possibie with a special
command that locates a specified character string.

Data file commands include OPEN, PRINT, INPUT, FIND,

INDEX and CLOSE.-

Program files hold BASIC programs in tokenized, ready-to-
run form for higher execution speed.

Program file commands are LOAD, SAVE, RUN and LIST.

Peripheral interface is simplified in 0S-65U by a
comprehensive set of I/0 drivers for:

- Serial ASCII terminals (printer or CRT)

- Low and high density alphanumeric and graphic video displays

- Stand alone keyboards

- Line printers

- Cassette tape recorders

- Up to 16 additional serial terminals
A common I/0 distributor permits easy selection of any I/0 device
or combination of output devices. -

0S-65U includes a timesharing executive program that provides
file load, save and print functions to up to 16 intelligent

terminals (C2-4P's and C2-8P's). This distributed processing

allows each of the 16 users to access floppy disk or hard

disk storage for their BASIC programs and to share a central
printer for hard copy listings. A Multi-Terminal Operations
Manual is available from 0SI.

05-65U includes a comprehensive set of utility programs
for management and maintenance of program and data files:

CREATE is used to create new files.

-DIR displays or prints a directory of files.

COPIER initializes new disk surfaces and copies from
one disk to another.

DELETE deletes a file.

RENAME changes the name of a file.

CHANGE permits machine language changes to disk memory.
COPYFI copies the contents of one file to another.

LOAD32 and LOAD 48 facilitate entry of machine code
routines as part of BASIC program files,

FPRINT prints the contents of sequential or random files.
FDUMP dumps complete file contents.
0S-65U also includes a number of extensions to BASIC that
provide complete systems programming capability to those who
will be adding end-user oriented applications sgftware. These
extensions include programmer control of disk error action,
comprehensive file access rights control, a "money mode"
- numerical output format, and a BASIC statement trace to speed

debugging. 4
=Y

System Initialization

0S-65U may be stored on either floppy disk or C-D74 disk
and may be bootstrap loaded from either. Boot loading from
floppy disk may be done with the (?EE%} bootstrap ROM -
the same ROM as has been used with 65;65D. In order to boot
load from the C-D74 disk, however, both the new 65F3 ROM
and the 65H boot ROM are required. (The 65H ROM is at FDXX)

When the reset pushbutton on the computer front panel is
pressed thé 65F3 ROM outputs the message:

H/D/M?

To boot. load from the hard disk (C-D74) type an H.

To boot load from the floppy disk,type a D.

To enter the machine language monitor, type an M.

If either H or D are typed, the 0S-65U system will be
loaded from disk and initialized. This initialization procedure
determines the amount of memory available for BASIC programs
and initializes certain peripheral devices. If a peripheral
device is present and has power applied but does not respond
to the initialization within a reasonable amount of time (up
to thirty seconds), a notification message will be output by
the initialization program. Examples of these messages are:

DEV B NOT READY

DISK E FAILED

At the completion of system initialiéation, the title and
revision level of the operating system are output and the
BASIC interpreter is initiated:

0S-65U V (Version number) -

FUNCTION

Pl

The user can type

UNLOCK

DIR

PDIR
or any other string
at this time.
UNLOCK enables exiting a program with a carriage return in
response to an input statement and enables CNTRL C. The work
space is cleared and the prompter "OK" is output, All FLAGs
are in the inactive state (odd numbered FLAGs).

DIR displays the disk directory.

PDIR prints the disk directory on the line printer,

Any other string causes the work space to be cleared and the
prompter "OK" to be output. Programs can be entered and/or

RUN in this mode but can not be exited from hence the system
is "LOCKED". All FLAGs are in the inactive state (odd numbered
FLAGs) except FLAG 21.

The INITIALIZATION function is performed by BEXEC* which is

a normal BASIC program which can be customized. The system

can be re-"LOCKED" at any time by running BEXEC*,

-10~

C-D74 Master and User System Initialization

Initialization from a C~D74 disk continues with the
output of the master system directoryd This is a directory
of the available user systems on the disk and might appear

as follows:

MASTER SYSTEM DIRECTORY

STARTING ENDING
NO. NAME ADDRESS LENGTH ADDRESS
1 MASTER 0 215040 215040

2 USER1 215040° 430080 645120
3 USER?2 6LH 5120 2150400 2795520

SYSTEM NO.?

Enter the number of the system to be selected.

PASSWORD ?
Enter the password.
The selected system will be initialized, will display its
title and enter the BASIC interpreter:

0S-65U V1.0

USER1 SYSTEM

OK

*This only applies when multiple systems have been installed
on the C-D74. This function is implemented by linking BEXEC*#

to SYSDIR with appropriate customization of SYSDIR.

-11-

N

How To Customize Your System

The ability to customize BEXEC*, the system initialization
program, provides the user programmer the means to easily
design a system that suits his particular application require-
ments.

A review of the supplied version of BEXEC* is provided here
to show the types of functions that may be done in this program.
Refer to the listing of BEXEC* in the back of this manual while
reading the discussion below.

When a 65U system is booted, the monitor PROM is tested to
determine which type of console device is used on the system.
Location 11664 and 11665 are then set to the device numbers of
the console input and output devices. These locations are
referenced, thereafter, for the console device number. BEXEC#
reads these locations and sets the I/0 distributor device flag
bytes to set the console as the active I/0 device.

BEXEC* also executes FLAG 21 to prevent the operator from
terminating the running program by typing only a carriage return
in response to an INPUT statement. This forces the operator
to choose one of the alternatives intended for him. Also, to
prevent the operafor from terminating the running program, the
Control-C and Control-0 functions are disabled with two POKEs.

BEXEC* then prints the name and version number of the
operating system. Obviously, any other title or instructions
can be output here.

When 0S-65U is booted from a floppy disk but also has

access to a hard disk, the hard disk cylinder address of the

-12-

active hard disk system must be stored in locations 61438 and
61439, The statement at line 150 does this.

BEXEC* then permits the operator to display or print a
directory or unlock the system. If a directory is chosen or
some other response is given by the operator, the sysfem is
left locked. If "UNLOCK" is input then FLAG 22‘is executed
to permit input escape and locations 14639 and 2073 are POKEd
to permit use of Control-C and Control-0.

Many other features can be added to BEXEC* to customize
it for a particular application. For example, the system is
preset for a terminal width of 132 characters. This can be
changed with the following two POKES:

POKE 23,TW : POKE 24, INT (TW/1l4)#*1h+1
When the system is initialized, memory size is established by
searching for the end of memory or by using a constant value
entered onto disk. Memory size can also be changed in BEXEC#*
by executing the following:

POKE 132 ,MS~INT(MS/256)%256 : POKE 133,INT(MS/256) : CLEAR

Refer to the sections of this manual entitled FLAG commands
and Peripheral Device Numbers for other options that can be

invoked by BEXECH#,

~13-

0S-65U File System Commands

The commands available in Ohio Scientific's Nine Digit
BASTIC for random and sequential disc file manipulation are
described on the following pages. 1In these descriptions,
commands are shown in capital letters and command variables
in lower case. The following command variables are string

literals (in quotation marks) or string variables:

Variable Contents

Unit A,B,C,D,E,F,G, or H
File Name Up to 6 characters
Password Up‘to 4 characters

One additional variable, channel, is a numeric constant or
variable of value 1 through 8.

When string literals are used in commands, the final
quotation mark may be omitted for brevity. LFor example,

the command DEV"E" and DEV"E are equivalent.

Passwords are not needed in OPEN, RUN or LOAD commands if no
password was used at program's create time. Furthermore,
passwords are not necessary if the files access rights will
not be violated, i.e., if a BASIC program is of the R/W type,
S

passwords are never needed. In general, Ohio Scientific

demonstration programs DO NOT USE passwords.

.

0S-65U File System Commands

System Commands

Establishes the specified device as the currently selected
mass storage unit. All file system commands executed after

this command will access the unit last specified in a DEV

command for directories as well as for all other files.

The unit spectifications areﬂé$mgiwgwyrﬁpwfor floppy discs

and E, F, G or H for hard diégs.

~15=

7N

Data File Manipulation Commands

OPEN file name, password, channel (password optional)

Opens the specified file for access and assigns it to
the specified channel number 1-8. The file will then be
available for read, write or read and write access as defined
when the file was created. If the correct password is given,
the file will be available for read and write access regardless
of the access rights defined when the file was created.

When a file is opened, the INDEX variable for the assigned
channel is set to zero.

CLOSE channel

Closes the file associated with the specified channel or
all open files if no channel number is specified in the CLOSE
statement. Closing a specific closed channel is an error.
PRINT % channel,...

Outputs data to the file associated with the specified
channel. The specified\channel must have. been previously
assigned to a file with the OPEN command and write access
permission must exist.

INPUT # device, "message'";%channel,...

Inputs data from the file associated with the specified
channel. If the optional message is included, 1t and any
further prompting messages are output to the console device
or to the device specified by the optional device specification,
if any (see Input/Output Device Specification, page 22.

Further prompting messages include a question mark, REDO PROM

START and EXTRA IGNORED. If the optional message is omitted,

~16~-

it and all further prompting messages are suppressed. Input
is from the file associated with the channel number which
_immediately precedes the input variable list. The specified
channel number(s) must have breviously been assigned to a
file with the OPEN command and appropriate read or write
access permission must exist.
INDEX {channel) = formula
Sets the value of the INDEX variable for the specified
channel to the result of the formula. The index 1s a positive,
byte (character) index into the file assigned to the specified
channel. The first character in a file is at index location
zero, the second at index location one, etc. When an INPUT or
PRINT statement is executed, the data is input or output
starting with the character at the index location and proceeding,
character by character, to higher index numbers. At the
completion of an INPUT or PRINT statement, the index variable
points to the next character to be read or written; but, of
course, may be altered by the use of the INDEX <{channel) command;
There are no limitations on changing an index except that
i+ cannot exceed the length of the associated file. Thus,
both rundom and sequential access methods may be used in
file I/0.

The value of an index may also be read by use of the

INDEY., (chanrel) function. For example, the statement
INDEX <1) = INDEX (1) + 10
increments the index by ten. -

-17-

7N

FIND "string", channel

Searches for the specified string in the file assigned
to theAspecified channel. The search starts with the
character at the current INDEX location and proceeds to the
end of the file or the point where a match is found. If a
match is found, the channel's INDEX is set to the location
of the start of the string. If no match is found, the

INDEX is set to 1E9 (the value 1,000,000,000).

The string to be searched for can be up to 32 characters
long and can contain don't care characters & (ampersand)
i.e."T&E" will FIND "THE" as well as "TEE".

Commas and carriage returns cannot be part of FIND
strings.

Numeric Output to Files

When string variables are output to a data file, the string
characters and a carriage return (end of entry mark) are output
exactly as would be expected. Numeric output, however, includes
a leading space for positive values (or a minus sign for negative
values) and a trailing space before the carriage return (end of
entry mark). These spaces impart no information and merely
consume file space. FLAG 11 can be used to suppress leading

and trailing spaces in numeric output to files. FLAG 12 will

restore normal operation of numeric output to files.

~18- QJ,

End Of File Action

Whenever the end of a file (EOF) is reached during an
INPUT or PRINT statement, the running BASIC program is terminated
with a system error message such as:

DEV A ERROR 132 IN LINE 1500
If some other action is preferred, the programmer may retain
control within the BASIC program and implement some other action
by previously executing the command

FLAG 5
In this mode of operation, when an EOF is reached, the INDEX
variable for the associated channel is set to 1E9 (the value

1,000,000,000) and the INPUT or PRINT statement in progress

is aborted with control returniﬁg to the succeeding statement.
Some data may or may not havé been transferred. An IF statement
should be used after each INPUT or PRINT statement to test for
the EOF condition. For example:

INPUT %1, DS

IF INDEX(1)»=1E9 GOTO 1000
The command

FLAG 6
terminates this ﬁode of operation and results in a system

error message when an EOF is reached.

-19- .

SN

Disk Error Action

Whenever a disk error occurs, the running BASIC program {
is terminated with a system error message such as:

DEV A ERROR 6 IN LINE 400
If some other action is preferred, the programmer may retain
control within the BASIC program and implement some other
action by previously executing the command

FLAG 9

In this mode of operation, when a disk error is encountered,

the statement in progress is aborted and control is transferred

to line 50000 in the BASIC program. At line 50000, the programmer

can perform whatever special action is required including getting

+he error number with a

PEEK(10226)

and the line number at which the error occurred with a
PEEK(11774) + PEEK(11775) *®256
The command

FLAG 10

terminates this mode of operation and results in a systenm

error message when a disk error occurs.

-20~- N ,

Program File Manipulation Commands

LOAD file name, password (password optional)

« Loads the specified program file into the BASIC work space
where it may be listed, modified or run. To be LOADED, a file
must be of type B (BASIC) and must have read access or the
correct password must be given. If the file size exceeds the
size of the work space, an OM (out of memory) error will occur.
SAVE file name, password

e

Saves the current contents of thg work space in the
specified file. If no file name, password is given, the
last LOADED file is saved. To be SAVED, a file must have read/
write access or the correct password must be given. TIf the
size of the program in the BASIC work space excgeds the size
of the file, an OM error will occur.

RUN file name, password, line number (pass&ord.and line number
optional)

Executes the specified program file by first loading it
into the BASIC work space then\running it. To be RUN, a file
must be of type B (BASIC) and must have read or write access
or the correct password must be given. Note that if a program

file has write-only access, it may be RUN, but may not be LISTed

and may not be LOADed or SAVEd without giving the correct password.

In effect, write-only access to a BASIC program file means that
the program has "RUN-only" access.
If the optional line number is specified, the program will

be run starting with that line.

-1~

0S-65U Nine Digit BASIC Extensions

Money Mode Output

The money mode output format prints numerical values
with two fractional digits to represent dollars and cents.

The output value can also be either right justified or left
justified within the print field.

Money mode output format is specified in a PRINT statement
by including $L, or $R, just prior to the name of the variable
(or constant) to be output in the money mode format. SL
specifies left justification and $R specifies right justification.
Example:

X = 100

PRINT X, R,X, SL,X

Prints as (_ is a space)

Input/Output Device Specifications

PRINT, INPUT and LIST statements may include I/0 device
numbers to direct I/0 from or to other than the console device.
I/0 devices are specified by #n in such statements, where
n is a constant or variable which contains . the device number.
Examples:

PRINT 2, "X= ",X

INPUT #3, "ENTER DATC™: /1, M,D,Y

LIST #5

029~

A

Statement Trace

To output each source line of a BASIC program as it is
executegixenter the command

(rine 7>
either in the direct mode or as a program statement. Each
line is output REESﬁQEqWPYﬂan asterisk to identify the trace
function. -

The trace can be stopped at any time by the command

-23-

' FLAG Commands

The flag commands are used to enable and disable certain

system features. The form of, the FLAG command is:

FLAG n

where n is one of the following:

1

2

10

11

—
N

13

1y

19

20

=~
™o

Disables the Close-files-on-error feature
Enables the Close-files-on-error feature
Selects the video/keyboard as console device
Selects the serial console device

Enables user programmable disk EOF action (INDEX set
to 1E9)

Enables program abort and system error message upon
disk EOF

Enables BASIC statement trace
Disables BASIC statement trace

Enables user programmable disk error action (goes to
line 50000)

Enables program abort and system error message upon
disk error

Enables space suppression in numeric output to files
Disables space suppression in numeric output to files
Enables INPUT%n, command file operation

Disables INPUT%n, command file operation

Disable disk checksum error checking

Enable disk checksum error checking

Digsable input escape on carriage return

Lnable input escape on carriage return

-4 =

0S-65U Utility Programs

A number of utility programs are provided as part
of 0S-65U for use in creating new files, copying

files, etc.

Descriptions of the operation of these programs

appear on the following pages.

Create File Utility

This utility program is used to create new files of
any type. A file must be created with this program before
it can be referenced by any of the file system commands.

To create a file, type:

RUN"CREATE"

The program output and expected type of response are shown
below:

CREATE FILE UTILITY

FILENAME (SIX CHARACTERS MAXIMUM)?

Enter a one to six character filename that is not a duplicate
of an existing filename.

MAXIMUM LENGTH IN BYTES(DECIMAL)?

Fnter the maximum length for the file. This number will be
increased by 16 and rounded up to the ﬁext even page

(256 bytes).

FILE TYPE
DATA = (D)
BASIC = (B)
OTHER = (0)

Enter D, B or O to specify the type of file. Only BASIC files

can be loaded, saved and run.

ACCESS RIGHTS

I

NONE (N)

READ (R)

1"

WRITE = (W)

R/W = (RW)

Enter N, R or W to specify the access permission for users
who do not specify the correct password. Users specifying
the correct password have read/write access. If write-only
access is defined for a BASIC program file, it will be RUNable
only and cannot be LOADed or LISTed.

FOUR LETTER PASSWORD?
Enter a four letter password or only a period (.) if the file
is to have no password. If RW was the response TO file type,
password is not requested. CREATE then lists the responses
and gives the user a chance to correct them. The file will
be created and entered into the directory.

The number of free bytes remaining on disk is reported
before the Create File program terminates; for example:

148736 BYTES FREE ON DISK

WARNING:

Do not allocate more memory for BASIC program files
than the computer system has. Such files can be SAVEd but
not LOADed or RUN because an.OM error will be reported.

On a 32K machine specify 8175 bytes maximum. On 438K they

can be 24560 bytes maximum.

Delete File Utility

Delete removes a file entry from the directory and
prepares the file's disk space for the repack program.
It does not actually free up any disk space. If one or
more deleted files are on a disk, the Directory Program
(DIR) will report XXXX bytes recoverable indicafing that
the Repack Program could free up this space if executed.
Deletions are performed by running the Delete Program which

simply asks FILENAME and PASSWORD.

Disk Pack Utility

This utility program removes all deleted files from the
system and packs all remaining files together at the start
of disk memory. This places all free space at the end of
memory, thus making it available for additional new files.
To pack a disk memory type:

RUN"PACKER"

The program output and expected type of response are as
follows:

05-65U PACKER UTILITY

PASSWORD?

Enter the appropriate password.
The program then begins packing the disk memory. As the
packing operation proceeds, a new file directory is output

showing the resultant file content and file starting addresses.

-28-

For example,

NAME TYPE ACCESS ADDRESS LENGTH

DIREC* OTHER NONE 26112 1024

BEXEC* BASIC R/W 27136 1024

CREATE BASIC READ 28160 8192
etce.

149568 BYTES FREE
14 FILES DEFINED OF 63 POSSIBLE
The packing operation can be lengthy depending upon disk

file complexity and should only be executed as necessary.

WARNING: If a disk error occurs during the packing operation,
the Disk Pack Utility will terminate and an error message will
be printed. Most of the files on the disk being packed when
an error occurs will be lost. For this reason, if the
possibility of a disk error exists, a disk memory should be

backed up before it is packed. (See Disk Copy Utility.)

-29-

Disk Copy Utility

This utility program is used to initialize disks and
to copy the complete systems portion or files portion of a
disk to another disk. To initialize or copy a disk, type:
RUN"COPIER™
The program output and expected type of response are as

follows:

DISK COPY UTILITY

INITIALIZE (I)

COPY SYSTEM (S)

COPY FILES (F) /

EXIT (X) 72
Enter the letter I, S, F to specify the function to be
performed. If X is entered, the program terminates.
Continue as described in the appropriately titled section
below.

Initializing

UNIT ?

Enter the appropriate alphabetic letter to specify the disk
drive unit to be initialized.
A,B,C and D refer to floppy disk drives. A single
drive system has unit A. A dual drive system has
units A and B, ctc.
E,F,G and Il refer to hard disk drives. A single drive
system has Unit E. A dual drive system has units

E and F, ete.

-30-

If a hard disk unit is specified, a password is required.
PASSWORD ?

Enter the appropriate password.

With either type of disk, the sequence continuas with:
FROM ADDRESS ?

Enter the initial disk address of the section to be initialized.
TO ADDRESS ?

Enter the final disk address of the section to be 1 itialized.

Floppy disk addresses are 0 through 275967.

Hard disk addresses are 0 through 72898559,

The system portion occupies addresses 0 through 25087 a::d

the files portion occupies addresses 25088 and up.

Since disk initialization is block oriented, the entered

initial address is truncatedr and the final address is rourn led

up to the nearest block boundary. Each block on a floppy diik

is 3584 bytes, and on a hard disk is 215040 bytes. If the

entered initial and final addresses are not at exact Block

boundaries, a confirmation request is output. For example,
WILL INITIALIZE O THROUGH 275967
ALRIGHT (Y OR N) ?

Enter Y if the specified address range is acceptable or, if

it is not, enter N and re-enter the addresses.

Disk initialization will take place at this time. Due to the

possible length of time involved in hard aisk initializatiocn

(up to 85 minutes), the calculated duration is output, for

example,

WAIT 7.5 MINUTES

Copying a System or Files

FROM UNIT ?
Enter the appropriate unit letter to specify the unit from
which data is to be copied.
If a hard disk unit is specified, an address range for the
copy must also be specified:

FROM ADDRESS ?

TO ADDRESS ?
Enter the appropriate initial and final disk address of
the section from which to copy.
Since disk copying is block oriénted, the entered initial
address is truncated and the final address is rounded up to
the nearest block boundary. Each copyable block on a hard
disk is 3584 bytes. If the entered initial and final addresses
are not at exact block boundaries, a confirmation request 1is
output. For example,

WILL COPY FROM O THROUGH 25087

ALRIGHT (Y OR N) ?
Enter Y if the specified address range is acceptable or, if
it is not, enter N and re-enter the addresses.
The copy sequence continues with:

TO UNIT ?
Enter the appropriate unit letter to specify the unit to
which data is to be copied. 0S-65U systems can be copiled to

floppy disks only in Versions 1.0 and higher.

If a hard disk unit is specified, an initial address for
the copy must also be specified:

TO ADDRESS ?
Enter the appropriate initial disk address of the section to
which data will be copied. Hard disk systems must begin on
disk cylinder boundaries; therefore, the entered address is
truncated to the next lower cylinder boundary. Tach cylinder
is 215040 bytes. If the entered address is not exactly on
a cylinder boundary, a confirmation request is output. For
example,

WILL COPY TO @

ALRIGHT (Y OR N) ?
Enter Y if the specified address range is acceptable or, 1Ff

it is not, enter N and re-enter the address.

-39

Rename ile Utility

This utility program is used to change the name and

password of an existing file.

To rename a file, select the unit on which the file resides
by typing

DEV'u"
where us is the appropriate unit designation. Then type:

RUN"RENAME"

The program output and expected type of response are as
follows:

RENAME FILE UTILITY

FILENAME?

Enter the name of the file to be renamed.

PASSWORD?

Enter the password of the file to be renamed or a period (.)
if the file has no password.

The program will locate the specified file in the disk
directory. If the name and password do not match those of
any existing file, the message FILE NOT POUND is output and
the program terminates. When the specified file is found,
the program continues.

NEW FILENAME?

Enter the new name for the file.

NEW PASSWORD?

Lnter the new password for the tile ovr o period () i the

file is to have no password.

-3 =

The filename and password are changed and the following
message 1s output:
RENAMED: old filename, password AS: new filename,

password

&

-35-

File Print Utility

This utility program is used to print selected sequential
entries from.a sequential file or selected fields from a
randomly addressable file.

To print a file, type:

RUN"FPRINT"

The program output and expected type of response are
as follows:

FILE PRINT UTILITY

UNIT?

Enter the unit designation for the file to be printed.

CONSOLE (C) OR PRINTER (P) OUTPUT?

Enter C or P to specify the output device.

FILENAME?

Enter the name of the file to be printed.

PASSWORD:

Enter the appropriate password or a period (.) for no password.
SEQUENTIAL (S) OR RANDOM (R) TYPE?

Enter S or R to specify the type of data file access to be

used.

If a random type file has been specified, skip the
discussion for sequential access which follows.

STARTING INDEX?
Enter a value for the starting file index from # through

the total file size minus 1.

FINISHING INDEX (# OUTPUTS TO END OF FILE)?
Enter a value for the last file index for the print. This
value must be larger than the starting index and less than
the total file size. To print to the end of file, merely
enter p.

The sequential print format is as shown in the following
sample print:

SEQUENTIAL FILE PRINT FROM INDEX # TO 64

FILE: PHODIR

INDEX: CONTENTS

g GORDON KNOTTS
14 566-1955
23 HARRY BONNELL
37 789-3245
46 CHARLES EVANS
60 324-7073

69

For a random type file, the sequence continues as follows:
RECORD LENGTH?
Enter the length of records in the file. (All records in a
randomly addressable file are the same length.)
OFFSET TO FIRST RECORD?
Enter § for no offset or a positive offset value if the first
file record begins at an index value other than zero.
STARTING RECORD NUMBER?
Enter the number of the first record to be printed. The first

record in the file is record number zero.

~37 =

FINISHING RECORD NUMBER (P OUTPUTS TO END OF FILE)?
Enter the number of the last record to be printed or B to
output all records to the end of file.

NUMBER OF FIELDS TO BE PRINTED?
Enter the number of fields within each record that are to be
printed. Any number of fields within each rgcord can be
printed.

FIELD 1 LOCATION?
Enter the relative location within the record of the first
field to be printed. If it is the first field within the
record, its relative location is 8. This message is repeated
to permit entry of the location of each of the fields to be printed.

The random dump format is as shown in the following sample
print:

RANDOM FILE PRINT FROM RECORD p TO 2

FILE: PHODIR

RECORD 8

FIELD CONTENTS

1 GORDON KNOTTS
2 566-1955
RECORD 1

FIELD CONTENTS

1 HARRY BONNELL
2 7893-3245
RECORD 2

FIELD CONTENTS
1 CHARLES EVANS

2 324-7073
-38-

Copy File Utility

This utility program is used to copy the contents of any
file to another file.
To copy a file type:
RUN"COPYFI"
The program output and expected type of response are as follows:
FROM
UNIT?
Enter the unit designation for the source file.
FILENAME?
Enter the name of the source file.
PASSWORD?
Enter the password of the source file or a period (.) if the
file has no password. The specified file will be located in
the appropriate disk directory. If the name and password do
not match those of any existing file, the message FILE NOT FOUND
is output and the program terminates. When the specified file
is found, the program continues.
TO
UNIT?
FILENAME?
PASSWORD?
Enter the appropriate unit designation, name and password of
the target file in response to each of the above questions.
The target file will be located in the appropriate disk
directory, the copy will be performed and the COPYFI program

will terminate.

-39~

File Dump Utility

This utility program is used to dump the total contents
of a data file.
To dump a file, type:
RUN"FDUMP"
The program output and expected type of response are as follows:
FILE DUMP UTILITY
UNIT?
Enter the unit designation for the file to be dumped.
TERMINAL WIDTH?
Enter 1 to 64 to specify the number of characters to be output
on each line.
CONSOLE (C) OR PRINTER (P)?
Enter C or P to specify the output device.
FILENAME?
Enter the name of the file to be dumped.
PASSWORD?
Enter the appropriate password or a period (.) for no password.

FILE OFISET?

If the dump is to start at the first character of the file,
enter f,otherwise enter a positive offset value.
NUMBER OF BYTES TO BE DUMPED (@#=ALL)?

Enter the number of bytes to be dumped or # if the whole file

is to be dumped.

T

The dump format is as shown in the following sample dump:

DUMP OF FILE: TFDUMP

CHARACTER SUBSTITUTION OF KEY:

NULL =

CARRIAGE RETURN #

OTHER CONTROL CHAR = @
o _ere___ @e____# 1 CLOSE# 5
32 DIMDS(80)# 10 INPUT "FILENAME"

64

Ty

VR

Disk Change Utility

This utility program is used to display the contents of
any addressable disk memory location in decimal or hexidecimal
and as an ASCII character and to change the contents of any
such location.

THIS PROGRAM MUST BE USED ONLY WITH EXTREME CAUTION BY

EXPERIENCED PERSONNEL OR CATASTROPHIC SYSTEM FAILURES

MAY RESULT.
To change disc memory, type:
RUN"CHANGE", password
The program output and expected type of response are as follows:
DISK CHANGE UTILITY
MODE: HEX(H), DEC(D)?
Enter H or D to specify hexidecimal or decimal mode for
address and data input/output. Enter X to terminate the
program. '
UNIT?
Enter the unit designation for the unit on which changes are
to be made. Enter X to terminate the program.
ADDRESS OFFSET?
Enter the offset value to be added to specified address values
to arrive at the absolute disk address to be displayed/changed.
ADDRESS?
Enter an absolute disk address or a relative disk address if
a non-zero address offset was specified. Enter a period (.)

to return to the ADDRESS OFFSET question.

BT,

Use of the address offset value permits casier relative
references to disk memory portions of the system or files.
For example, the difference between disk and ram addresses for
the system is 3072 (hex CD@). Entry of this value for an
address offset permits reference to system locations on disk
by the corresponding ram addresses. Then, for example, to
change the memory size locations (11702 and 11703 in ram, 14774
and 14776 on disk) merely enter the ram address 11702. The
offset value 3072 is automatically added internally by the
program giving 11702 + 3072 = 14774, the proper disk address.

The contents of disk memory locations are displayed
as follows:

aaaaaaaa c¢ dd?
where the 2a's represent the address, c represents the ASCII
character represented by the data byte and dd represents the
numerical value of the data byte.

Enter the new value for the data byte if it is to be
changed.

Enter a slash (/) to display the contents of the next
consecutive address without changing memory contents.

Enter a back slash () to display the contents of the
rrevious address without changing memory contents.

Enter a period (.) to return to the ADDRESS question.
Enter an X to terminate the program.

When all needed disk changes have been made, the CHANGE
program must be terminated by typing an X or the changes may

not be effected.

-43-

Note that all numerical output by this program is in the number
base specified in response to the MODE question. Likewise,

all input must be expressed in the same number base. Entry

of a number in the wrong base will result in a repetition of
the last program output if the error is detectable. However,

not all such errors are detectable so user caution is advised.

T

Machine Code Loader Utilities

These utility programs are used to create BASIC programs
which also contain machine (assembly) code within their program
area. In such programs, the machine code resides in the lower
portion and the BASIC program occupies the uppermost portion
of the program area. LOAD32 is used in 32K ram systems and
LOAD48 is for use in 48K ram systems. These programs are

structured as shown here:

$6000 _ $C000
BASTIC interface
and 0S~-65D drivers
$5E00 | $BEOO
$2000 _ $8000
BASIC interface
and 0S-65D drivers
User
$1E00 L $7E00
Space
! - a
Usep 24064 bytes
Space
7680 bytes
0 | %6000 0 | $6000
Relative Ram Relative Ram
Address Address Address Address
LOAD3?2 LOADUY

Any portion or all of the user space in ecach program can be
loaded with machine code routines developed on an OSQBSD or
WP-1A system.

Then the user's BASIC program which interfaces to the
machine code routines can be entered in the remaining space

above the machine code.
-4 5

-~

The procedure for constructing such a program follows.

Create a program file for the program using the CREATE
utility. Define its size large enough to contain both the
needed machine language routines and the BASIC program which
interfaces with these routines.

Develop the machine language routines on an 0S-65D or
WP-1A system. These routines must be assembled to run a
selected ram address within the LOAD32 or LOADU48 user space.
After the routines are developed, save the resulting object
code on the 65D or WP-1A diskette.

Next, boot the 0S-65U system and type:

RUN"LOAD32 or RUN"LOAD4LS8, as appropriate,.

The program output and expected type of response are as
follows:

MACHINE CODE LOADER UTILITY - XXK

TO RETURN TO 0S-65U TYPE: GXXXX

A

The program has now entered an 0S-65D disk operating system

~ within its program area and will respond to any 0S-65D commands.

At this time, the 65D or WP-1A diskette containing the object
code for the machine language routines developed earlier can
be inserted into the disk drive. The object code can then be
loaded into the user area with the C (call) command. For
example, to load object code from track 50, sector 1 into the
user area at hex 6000 type:
C6000=50,1
(Refer to the 0S-65D manual for further information on its

operation.)

4 H-

e

When the needed machine code routines have been loaded
into the user space, return to 0S-65U by reinstalling the 65U
diskette and typing: .

GXXXX where XXXX is the address output earlier.
0S-65U will type: |

0K
At this time, define the size of the machine language portion
of the new program and clear the BASIC portion by typing:

NEW XXXX
where XXXX is the decimal size (number of bytes) of the machine
language portion,

The BASIC program may now be entered and the resulting
combined program saved on disk by typing:

SAVE filename, password
where the filename and password are as defined when the original

program file was CREATEd in the first step.

~47-

0S5-65U

Peripheral Device Numbers

Device
Input OQutput Flag Bit*
1 Serial console device (ACIA) 0
1 Serial console device , : 0
2 Keyboard#®# 1
2 Video display (HQO or 5S40 1
3 UART input (430) 2
3 UART output (430) 2
Lo Memory input 3
) Memory output 3
5 Line printer 4
8 CA-10X 16 port input 7
8 CA-10X 16 port output 7

4To activate a specific device, set this bit in the appropriate
Active Device Flag Byte. For example, to output to the line
printer and serial console, use

POKE 11686,17
or its equivalent

POKE 11686, 2a4+25T1
where 4 and 1 are the respective peripheral device bits.
“hVepsions of 0S-65U with a P after the version number support
the Polled Keyboard as device 1 and only the 540 video Jdisplav
as device 2. The Polled Keyboard PROM is vequired at STDOH to

support the polled keyboard.

TR I

Console Device Control Characters

The console device - either a serial terminal, device 1,

or a 440 or 540 video terminal, device 2 -~ provides a number

of control character commands for controlling output to the

console and BASIC program execution:

]

(control) C

(control) S

(control) Q

(control) O

(control) D

(control) W

stops BASIC program listing or execution
at the end of the current statement

stops all output pending input of a
(control) Q

restarts output that was stopped by
(control) S or D

causes output to be "thrown away'" pending
input of another (control) O

limits output to one "page'" (video screen)
at a time, then stops pending input of a
(control) Q which results in the next "page"
being displayed

terminates paging of output that was
initiated by a (control) D

;49

Line Printer Page Control

The line printer, device 5, includes a page control featuﬂ“
that skips six lines every 66 lines in order to provide a top
and bottom margin on each page of printer output. When the
system is booted, the first print line position is assumed to
be under the pfint head. If it is not, the printer paper should
be so adjusted. Proper page control will be maintained
automatically thereafter as long as the paper position is not
manually changed. ~

The number of printed lines per page (page size - usually
66 - minus top and bottom margins) can be changed by POKEing
the required number into location 14M457. If the number 66 is
POKEd, paging is effectively disabled. If necessary, the total"
number of lines per page can be changed by POKEing 14387. (

The following sample statement may be used to cause a slew
to top-of-form:

100 PRINT #65: IF PEEK (15908)<¢>PEEK (1u4457) GO TO 100

The page control feature is useful on printers that do not
have such a feature internally such as the Centronics 779. Users

of printers that do have a paging feature, such as the Okidata 22,

may prefer to disable the feature in 0S-65U by a POKE 1h457,66.

— 50—

Indirect Files

Indirect files provide a mechanism for merging programs
and for transferring BASIC programs to or from 0S-65D systems
and 0S~-65U systems. Ohio Scientific's Small Systems Journal,
Volume 1, No. 5, contains a detailed discussion of indirect
files under 0S~65D.

Prior to using indirect files under 0S-65U, tﬁe following
steps must be taken:

1). Preset a constant memory sige into 0S-65U that leaves

sufficient space at the top of ram memory to hold
the indirect ASCII file. Use the CHANGE utility as
follows (user input is underlined):

RUN" CHANGE"

DISK CHANGE UTILITY

MODE: HEX(H), DEC(D) ? H

UNIT? A (or other appropriate disk unit designation)
ADDRESS OFFSET? C@9

ADDRESS? 2DBG

pppny 2DB6 pp? 88 (low byte of first free ram address)
ppon 2DB7 p8? 76 (high byte of first free ram address)
pOHP 2DB8 A9? X

OK

In the above example, the last locaticn left for 05-65U

BASIC programs is 767f and the [irst location available

for the indirect file is 7680. o

The 05-65U system must be rebooted to effect the change

in memory size.

2). Enable the indirect file function with the following
BASIC statements:

POKE 14646, 91 DT, el

POKE 14721,2U doee
Now, for example, a BASIC program, after being LOADed
into the work space, can be output to the indirect file
by typing:

LISTC (return)

(program listing)

apld
The same, or another program previously output to the

indirect file, can be input to the work space by typing:

(control) X (return)

50

00 44 Uo'&()(r}n;k SR PITE (Lo ~ ,

' 00 74 SYMETE e a7 ‘
[P 42 Aewen 7 D1l i
4
3054 }huu%;OMnﬁﬂ(COUW‘ngmgb Ala '
,\(@ . - 05~-65U <
))

Memory Locations

0085 ovent Lk (o)
HEX DECIMAL
2D89 116567 Memory input pointer (2 bytes; low, high)
2D3D 11661 Memory output pointer (2 bytes; low, higl
. P90 11664 Console input device number
2D91 11665 Console output device number
2D92 | 11666 Memory I/0 pointer for indirect files
(2 bytes; low, high)
2D3gY 11668 Active input device flag byte
2DAB 11686 Active output device (lag byto
2088 11702 Constant memory size (f=use all availablec
memory) (2 bytes; low, high) svatem must
be rebooted to effect change.
~ £900 24576 Start of BASIC program work space
7 04% uD55 19798 CA-10% 10-povt interface divice index
(B,2,0,...,30 correspond to port
2 L .
//Q o 5 // 1,2,3,... 1l,b-2‘5d programs lnterface
to scan all input ports, oulput lto
7)) 0 . :
VQJMAA;W« port 1.)
AN ?51A 118072 Number of floppy disk drives on system
)y & ppy
; @D, S’ - .
{({ 3L4PA 13322 Number of CD-=-74 disk drives on systen
T 7 BLLE 1330 ' BASIC line delete character (I=0(4)
(}[7551\/ Ho72 1394 BASTC character delete chavacter (4-395)
< 4 ' ‘
0 Sto I28¢ AGUAPE PECHT UErow ()
e et cmes e\
Ol (%5 Seeate PO dpons (330
7170 0oTCH

)':)4 [\’ ll‘ U " 7'; * ‘{:;\lf ’[‘_,/! (

Py 0150 3—0*.4 _
les R0 30
ek oo Uq9

:f—\

Page 0 is configured as follows:
KB-6 uses all locations 0-D4 and FF

KB-9 uses all locations 0-DC and FF

[

ERETAG (1ﬁjmﬁilﬁbﬁ, i v L
KB-6 | DESCRIPTION
0 0 JMP to WARM START BASIC.
6 6 Address of routine to transfer USR argument to y,A (AYINT).
3 8 Address of routine to transfer (y,A) to result of USR
function (GIVAYF).
13 14 FLAG set to FF if output is suppressed (CONTROL O mode).
Set to 0 otherwise.
14 15 Number of NULLS to print.
15 16 Current terminal column (equal to POS (0)).
16 17 Line Length.
17 18 Position beyond which there are no more comma fields.
Equal to 14*(INT (line length/14)-1). |
1A 1B Input buffer .72 decimal bytss,
76 78 P Pointer to start of program.
78 o /- Pointer to start of simple variable table.
7A IRERINE 7c Pointer to start of array table.
7C S 7E ‘ First location unused by array table.
TE b 20 . Lowest location used by string data.
82 24 Highest memory location in use by BASIC.
84 36 Current line number.
AY AE Fleating accumulator
89 CD Routine to read a character from current program position.
01 D8 Current random number.
DS DD First unused page 0 location. - |
FF FF Used by STRS function.

Page 2

{
|

PAGE TYPE
0 PIA
1 PIA
2 VIA

/O Device Base Addresses

START

ADDRESS FUNCTION
$EB10 Keyboard
$EB820 IEEE-488
$E840 USR PORT cassette

Location not specified are used but have no clear one function definition.

PET PAGE ZERO MEMORY MAP

FROM

000
001

TO

002

Terminal I/O maintenanc

003
004
005
006
007
008
009
010
090
091
092

089

Evaluation of variables

093
094
095
096
097
098
099
100
101
102
104
112
114
116
Data storage maintena
122
124
126
128
130
132
134
136

138
140
142
144

103
111
113
115
121
nce
123
125
127
129
131
133
135
137

139
141
143
145

DESCRIPTION

$4C constant (6502 JMP instruction).
USR function address lo, hi.

Active /O channel #.

Nulls to print for CRLF (unused).

Column BASIC is printing next.

Terminal width (unused).

Limit for scanning source columns (unused).
Line number storage before buffer.

$2C constant (special comma for INPUT process).
BASIC INPUT buffer (80 bytes).

General counter for BASIC.

$00 used as delimeter.

General counter for BASIC.

Flag to remember dimensioned variables.

Flag for variable type; O#numeric; 1 + string.

Flag for integer tape.

Flag to crunch reserved words (protects ‘& remark).
Flag which allows subscripts in syntax.

Flags INPUT or READ.

Flag sign of TAN.

Flag to suppress OUTPUT (+ normal; — suppressed).
Index to next available descriptor.

Pointer to last string temporary lo; hi.

Table of double byte descriptors which point to vaiables.
Indirect index #1 lo; hi.

Indirect index #2 lo; hi.

Pseudo register for function operands.

Pointer to start of BASIC text area lo; hi byte.
Pointer to start of variables lo; hi byte.
Pointer to array table lo; hi byte.

Pointer to end of variables lo; hi byte.

Pointer to start of strings lo; hi byte.

Pointer to top string space lo; hi byte.
Highest RAM adr lo; hi byte.

Current line being executed. A zero in 136 means statement
executed in a direct command.

Line # for continue command lo; hi.

Pointer to next STMNT to execute 10; hi.
Data line # for errors lo; hi.

Data statement pointer lo: hi.

A.2

Expression evaluation

Pointer to variable referred to in current FOR-NEXT.
Pointer to current operator in table lo, hi.

Constant used by garbage collect routine.

Floating accumulator #1. (USR function evaluated here).
Duplicate copy of sign of mantissa of FAC #1.
Counter for # of bits fo shift to normalize FAC # 1.

Pointer to ASClI rep of FAC in conversion routine lo; hi.

CHRGOT RAM code. Gets next character from BASIC text.
CHRGOT RAM code regets current characters.

Pointer to start of line of cursor loc lo; hi.

General purpose start address indirect lo; hi.
General purpose and address direct lo; hi.

Pointer to start of current tape buffer lo; hi.

Overflow byte that BASIC uses when doing FAC to

146 147 Source of INPUT lo; hi.
148 149 Current variable name.
150 151 Pointer to variable in memory lo; hi.
152 153
154 165
156 - Special mask for current operator.
157 158 Pointer to function definition lo; hi.
159 160 Pointer to a string description lo; hi.
161 - Length of a string of above string.
162
163 - $4C constant (6502 JMP inst).
164 165 Vector for function dispatch lo; hi.
166 171 Floating accumulator #3.
172 173 Block transfer pointer #1 lo; hi.
174 175 Block transfer pointer #2 lo; hi.
176 181
182 -
183 -
184 189 Floating accumulator #2.
190 - Overflow byte for floating argument.
191 - Duplicate copy of sign of mantissa.
192 193
RAM subroutines
194 199
200 “
201 202 Pointer to source text lo; hi.
203 223 Next random number in storage.
. OS page zero storage
224 225
226 - Column position of cursor.
227 228
229 233
234 - Flag for quote mode on/off.
238 Current file name length.
239 Current logical file number.
240 - Current primary address.
241 242 Current secondary address.
243 244
245 - Current screen line #.
246 - Data temporary for 1/O.
247 248 Pointer to start loc for O.S. lo; hi.
249 250 Pointer to current file name lo; hi.
251 254 Unused.
255 -
ASCIl conversions.
Page 1

62 byte on bottom are used for error correction in tape reads. Also, buffer for ASCIl when BASIC is
expanding the FAC into a printable number. The rest of page 1is used for storage of BASIC GOSUB and
for NEXT context and hardware stack for the machine.

A-3

VARIABLE ALLOCATION

Space is allocated for variables only as they are encountered. It is not possibie to allocate an array on
the basis of 2single elements, hence the reason to execute DIM statement before array references.
Seven bytes are allocated for each simple variable whether it is a string, number, or user defined

function.

The first two bytes give thename of the variable:

byte 1 byte?2
INTEGER first chr + Second chr + 128
128 or128
FLOATING first chr second chr
or0
STRING first chr secondchr + 128
or128

The last five bytes give the value of avariable, or adescriptor to the rest of the data:

INTEGER
actual value
256 * HI LO 0 0 0
FLOATING actual valuein binary floating point
STRING pointer
chr
count LO ol 0 0

The simple string variable points to alocation in high memory, where the actual characters are stored.

Examples of declaration and storage

15% =90

201 181 0 80 0 O O
Cy="HELLO"

67 128 5 . . 0

A5

Locations 124 and 125 contain the first address of memory where a simple variable name will be
found.By incrementig the address by 7 each time the ext simple variable name in the table is
encountered.The end of the variables is defined-by the address in 126 and 127.

Locations 126 and 127 also define the starf of array storage. The first two bytes of array descriptors
arethe same as simple variables but the next five bytes are special as follows:

byte 3 byte 4 byte 5 byte 6 byte 7
VECTOR _ 7 + (size + 1)*
ARRAYS (dim)*A 0 1 0 size +1

where A = 2forinteger, = 3for string,or = 5for floating.

By incrementing the search address by the current byte #3of the descriptor each time, the next array
variable is reached. Locations 128 and 129 contain the ending address of this table.

BASIC TEXT
(124,125)
simple variable pointersinvolved in BASIC
storage vaiable storage.
(126,127)
array variable
storage
/
(128,129)
high
memory

A6

Because the variables are divided in storage between arrays and simple variables insertion of an
additional simple variable is a bit more complicated once an array has been defined. First,the entire-array
storage area must be block moved upward by seven bytes and the pointers adjusted upward +7.

Finally, the simple variable can be inserted at the end of simple variable storage.

If large arrays are defined and initialized first before simple variables are
assigned, much execution time can be lost moving the arrays each time a
simple variable is defined. The best strategy to followin this case is to
assign a value to all known simple variables before assigning arrays.

This will optimize execution speed.

Functions of NEW and CLRon data pointer:

CLR
String pointer equated to top of memory data pointer to
startoftext — 1endof arraytableto start of variables end

of simple variables to start of variables.

NEW
String pointer equated to top of memory data pointer to
startoftext — 1 endof arraytableto startoftext +3
endof simple variables to start of text + start of variables

to start of text + 3.

A7

N

PRINCIPAL POINTERS INTO PET RAM

256 * PEEK(123 145 125 127 129 131 133
+ PEEK(122 144 124 - 126 128 130 132
@ N @ @ @ a o
3 5 5 e o 3 °
@ ’% 5 é % 24)
% 3 . & £ 5 3
@ 2 o - @ 2
3 g ° v <
- @ » o
m/ ®
at initialization / ' 8192
000
1024 1025 1028
typical program
BASIC
statements variables arrays strings
1025 1092 1113 1175 8184

A-8

v 2155 e

o Attt i wats 1o i o o ewe fn b e e e

HOW BASIC STATEMENTS ARE STORED

1024 1025 1027 1029
0 Link Line # compressed BASIC text 0 \
end of
statement
is flagged
/ by zero byte
Link Line # compressed BASIC text 0
Y
010

end of text is
stored as zero
link bytes

A9

Floppy Disk Error Codes

9
10

11

13
1y
(15
| 16
17
18
19

20

Drive not ready

Seek error

Invalid unit number

Can't»find track zero

Can't find index hole

Diskette write protected

Track unsafe (can't verify write)

Incomplete Header

H

Header Framing Error (FE)
Header - Overrun (OR)
Header - OV,TLE

Header - Parity Error (PE)
Header - PE,IL

Header - PE,0OV

Header - FE,OV,FE

Data Field - Incomplete
Pata P'ield - Framing Error
Data Field - Overrun

Data Field - 0OV,I'L

Dita I'ield - Parity Error
Data Field - PE,IE

Data Field - PE,0OV

hata Tield - PE,OV,IFE
Checksum Error

Uit Out of Service

05-651U Ilecuje;‘ Found

Track Zero Véfificétion Error

Track Out of Range

~ L~

0S-65U Hard Disk Error Codes

1

10
11
16
24

25

> 82

Drive Not Ready

Seek Error - Timeout

Invalid Unit Number

Restore Timeout

DMA Failed to Terminate

Write Protect Error

Sector Unsafe (Can't verify write)

Checksum Error

Sector Header

Sector Header Cylinder Mismatch

Track Mismatch

Sector Header

Sector Header Sector Mismatch
Data Field - Checksum Error
Status Error

Unit Out of Service

Cylinder Out of Range

-55~

SN

0S-65U File System Error Codes

128 - File not found

129 - Channel not open

130 - Access Right violation
131 - Executability violation
132 - End of file

133 - Channel already open

BASIC FRRoR

Us UN- SUG SCRIP TED
SN SYN TAX

T~

Ow CUT -0 F~ mem oy

ORV] OUER FlLolk

E‘v’[f:) /‘3

Creating A New Slave System On 05-65U

1. Initialize (boot) the CD-74 disc.

2. Select System No. 1.

3. " Enter the password.

"OK" will be output

4. List lines 50-250 and enter the new system name, password,
and length in a DATA statement after the last onec in this
group of lines; but before line number 250, then SAVE
the program.

5. Type RUN to gef a new systems directory and to see the
starting address of the new system. Select System No. 1
again.

6. RUN"COPIER and copy system and files to the new system
address. (If this portion of the disk hasn't been
initialized, that must be done before the copy.)

7. Type RUN"SYSDIR and select the new system.

8. When it comes up LOAD"CREATE and LIST 4, change this line
to HS= size of this system in bytes as printed in the
system directory. Then SAVE this program.

9. Do the same with DIR, line 60, as was done with CREATE in
Step 8.

0. Do the same with PACKER, line 50, as was done with CREATE

in Step 8.

WARNING: Steps 8, 9 and 10 are not meroly for decumentation
purposes. The new slave system as well as any other
systems on the disk may be destroyed if these steps

are not properly performed.

~57 -

Gulde to 08-650 Directory.

The 0S-65U diskette contains several demonstration programs and
data files. DIREC* is the actual directory and should not be
tampered with. It 1is supported by the CREATE program, the
DIRECTCORY program ana the OPEN, LOAD, RUN and SAVE routines in
BASIC.

BEXEC* is the initialization program which 1is automatically
executed whenever the machine is reset, The user can modify the
end of BEXEC* as desired to customize the system. For instance, &
menu can be added to select programs or have BEXEC automatically

print a airectory.

BUS 1, BU3 2, and 3U5 3 are three short programs that could be
used as a basis of a small business applications program system.
These three programs utilize two data files - ACCl and ACC2Z.
Consult the included listings in conjunction with this
discussion. BUS 1 maintains a random access file named ACCl which
contains account numbers and a current balance of each account.
ACCl has been pre-loaded with dummy data on the diskette. lt has
Accounts 0 thru 200 and each account, typically, has an amount
of money equal to twice the account number in it. Let's examine
the structure of the program to get a better insight into the
operation of 08-65U. Line 10 opens ACCl, The program then asks
for the account number on line 20. Since it was predetermined
that the account ranges would be between 0 and 199, 1line 30
protects against a random access out of range. The account number
is entered and used to calculate the index of ACCl in line 35.|
Line 40 has conditional input for checking or modifying the
program. Let's consider the case of "checking" where the program
falls through to line 70. It simply inputs the account number
which is variable A and the current value as variable B. It then
prints the account and the amount using right money mode to force
numeric output. If "modify" shows in line 40, the program falls
through to line 100 in which it asks for the new amount wvariaole
Y, it tnen reprints out account number and the amount of the
random file. The format of the random file 1is two entries
sequentially loaded and accessed within random aadress
organization of 20 characters. The total length of account number
and the amount must be less than 20 characters including tne
carriage return at the end of each entry. Each new account entry
starts exactly a multiple of 20 characters from the beginning of

the file so that this file wuses bpoth random access for fast
access and easy editing and then within that random accesseda
field, it sequentially addresses two entries for easec ot

programming.

~-58~

BUS2 is another program which simply maintains . pure sequential
file with an added twist. The file maintains accHunt number and
description of the account, such as, company name or part
descripton. The file that this operates on is £C 2. This file,
although sequential, uses a trick to quickly finc the end of the
file. A simple approach to finding the end of the [file would be
to physically enter a character field as end of fil. such as the
word "END". The user would have to compare each str ng input for
a match with the word "END" to find the end of file ., a tedious
process. Furthermore, when upon ending the file, 1. would be
necessary to write over the word "END" and physically -ewrite the
word "END". This file uses an alternate approach. It places a
pointer to the end of the file at the beginning of the file and
allocates up to 10 characters for this end of file indic:tor. The
end of file indicator is first loaded in a totally new AC 2 file
by the use of the NEW command in line 20 where the progra: falls
through line 500. Here, if the user types in the word PA.:SWORD,
it loads the variable %z into the file at location 0 so that a new
file has one entry at location 0 which is the number 10. Ti2> 10
is used by the program as the first place in file where a:. tual
data can be placed. Once this pointer to the end of the file 1is
placed with the NEW command, the ADD command can be used to =dd
additional account descriptions to the file. By the way, the f.le
ACC2 currently has several entries in it. Let's consider a pa s
through the program for an ADD command. The file is opened, ti. -
end of file pointer is loaded 1in 1line 40 and stuffed intc
variable Z. The index to the file is set to the beginning of th=
actual data which has been pre-specified to be 10, then Jjump tu
line 300 where the index is now set to point to the physical end
of the existing file, input an account number and description,
print these to the file and update the variable Z with the new
index. If another entry is desired, go back to line 310, add
another account and description and update the index to the file.
When all additional entries have been added to the file, the
variable 2 which 1is the new physical end of file pointer |is
stuffed into location 0 in the file by lines 400 and 410. The
file is then closed and the program exits. To 1list the files,
open the file, input the end of file pointer in 1line 40,
variable 4, then set the index to the file to location 10 in the
file. Input account numbers and descriptions successively and
print them out on a terminal until the index to the file equals
or is greater than the end of file pointer that was at the
beginning of the file.

-59~

‘hen, terminate the program. ACCl and ACC2 and BUS 1 and BUS 2
demonstrate two fundamental programming techniques which are very
useful for small business programming. A very efficient small
business package can be generated by wutilizing random access
numeric files for the data that is frequently changed in a small
business such as the payable accounts, receivable accounts and'
inventory. Sequential files can then be utilized to generate
reports with descriptors so that a typical accounts receivable
report woula utilize account descriptions in a sequential file in
conjunction with numeric data in a random access file. An example
of how to construct such a report is shown in BUS 3. Let's
examine the source of listing for BUS 3.

BUS 3 prints out the accounts and descriptions specified by ACC2
along with the physical balance maintained for those files in
ACCl. No arithmetic operations are actually performed on the
balance but this would be a very straight forward extension of
the program. First, ACCl and ACC2 are opened, then the program
inputs the end of file pointer from ACC2, sets the 1index for
Channel 2 (which corresponds to ACC2) equal to the beginning of
data and inputs an account as a descriptor. Then it wuses that
account number to set the index for random access in ACCl. BUS3
inputs the account number from ACCl and just to be extra safe,
which never hurts in business programming, compares the account
pulled from ACC2 with the one pulled from ACCl. If they are not
equal,it specifies that some sort of error occured and exits the
"program. If they are equal,it pulls a physical balance from ACCL,
prints tne account number, description and the current balance
and via line 120, continues this process until it hits the end
of file pointer in ACC2. The use of redundant fail safe
comparisons and messages is extremely important in the small '
business programming to constantly check the user, the programs,
and the system. It certainly doesn't hurt to have redundant
tests such as the comparison in line 90 of this program.

PHONE and PHODIR are a program and data file for a phone
directory which seems to be the standard way of demonstrating
BASIC file capability.The phone directory program here is
obviously much shorter than phone directory programs in 05-65D,
of course, due to the fact that all the major file operations are
handled via BASIC in 05-65U.

-60-

Ine phone directory program creates and maintains a simple
sequential telephone directory file which utilizes an end file
pointer at the beginning of the program. Its operation is very
similar to BU5 2. The program has four commands - NEW, FIND, ADD
and EXIT. The NEW command places the end of file pointer at the
beginning of the file, ADD then wutilizes this pointer to add
additional names ana phone numbers to the file. EXIT simply exits
the program and closes the file on its way out insuring that the
most recent data is stored in the file. FIND command however
makes use of the very powerful FIND command in BASIC. This 1is
accomplished through line 70 and 80. The user inputs the name
under the FIND command and then line 80 uses the FIND command in
BASIC to find the INDEX of the beginning of that entry in the
file. The FIND command automatically reports an index of one to
the ninth power or 1E9 if it does not find the string in the file
specified. Therefore, line 90 immediately checks INDEX to be
greater than 1E8 to check if the entry is not found. An important
feature of the FIND command that can get programmers in trouble
is that the FIND command starts from the specified index within
the file, that is, it searches from specified starting index of
the file to the end of the file. It is therefore important that
the user be sure that the index for a particular channel or file
is set to 0 before executing the FIND command if he desires to
search the entire file. Note that in 1line 45, the INDEX of
Channel 1 is set equal to 0 each time through the command loop to
insure that the FIND command always searches from the beginning
of the file. The user can use the LISTEXR program to list the
PHODIR file. He simply runs LISTER and types in PHODIR with
response to file name in which case the program will list out the
file.

LABLE is a powerful mailing label program. This program could be
used airectly as a general purpose mailing label printer progran
by simply adding the appropriate formatted PRINT output for a
particular line printer. It is set up to be used with any data
file as specified by the user when operated. The system also
includes sample label file TLABLE which includes some Ohio
Sclentific dealers. The program has five functions - LIST, ADD,
EDIT, NEW and EXIT. The mailing program utilizes an extremely
powerful indexed randomly addressable file. This Ffile system
allows indexed addressing, random access and sequential access
all on one file to provide virtually instantenous response to any
comnand no matter what size the actual mailing label file is. The
file structure and operation of the program should be studied in
ucptn to get a full appreciation for the power of 0S-65U.

~-61~

The format of the files the mailing label program supports are
as follows. The first ten characters of each mailing label file
contain a pointer to the end of the file so that new entries can
be quickly added to the file. Then after the first ten
characters, each mailing label entry is allocatea a total field
length of 120 characters which are allocated as follows. The
first 25 characters - the person's name, second 25 characters -
the company name, third 25 characters - street, fourtn 25
characters - city and state, 10 characters max for zip and 190
characters max for a coded keyword field. Thus, the third mailing
label data field starts at 2 times 120 characters plus 10
characters into the file. This file structure might seem somewhat
wasteful of file storage space but it 1is capable of extremely
powerful editng, sorting and selective searching entries some of
which are exploited 1in the program, some of which are left to
user .expansions. The NEW command simply sets up the end of file
pointer. The EXIT command simply exits the program closing the
file on the way out to insure that the most recent operations are
stored on the file. The ADD command falls through to line 500 and
utilizes a string of subroutine calls to acquire the string
information for the label with full editing capabilities so the
user can correct typos as they are made, then stores away each
label field as a 120 character indexed field. It constantly
updates the end of memory pointer and when the completion of the
additions are made, a new end of file pointer is stored away at
location 0. The LIST command simply lists out the entries from
the beginning of the file to the end of file pointer. By simply
changing the subroutine at 1200 or adding several conditional
PRINT subroutines, the user can adapt this for any specific
line printer. One of the most powerful features of this program
is the EDIT command. The EDIT command falls through to line 300
and uses the powerful FIND command. By use of the FIND command in
BASIC, any string can be keyed on to bring in the entire mailing
label or the entire field, so that if only the zip code or the
address or the person's name is known, one can bring in the rest
of the information. If one is not sure of the spelling, he can
substitute ampersands for part of the spelling or try keying in
only part of the word. The use of the FIND command to bring an
entire field of several entries has extremely powerful
applications in all business applications and opens up the use
of Unio Scientific's microcomputer systems in applications in big
business data base systems.

o

thus, witnh the EDIT command 1if a little bit is known about the

entry, the entire mailing label can be brougnht in and selectively
ceditea as desired and then placed back in the file. It should be
obvious that this program has a far more general purpose than
just mailing labels. By simply changing the field specifications
and allocating space and lines as desired, this program could be

‘oxganaed to a complete data ba%ed management system. The optional

use of keys in each field can be used to selectively PRINT or
L137T lapels as desired. For instance, a code character could be
put 1n to specify Northeastern United States or dollar volume of
tae dealer. A conditional PRINT could be easily programmed which
checks each mailing label's keyword and prints it out
selectively. Also sorting by any parameter is very
straightforward by use of the FIND command and the string
equalities in BASIC.

BUsl, BUs2, BU53, PHONE and LABEL should give a good fundamental
unaerstanding of programming file oriented applications with
05-65U. It's believed that because of the power of the INDEX and
FIND commana and the general ultra high speed operation of the
entire system that it should be possible to out perform any other
microcomputer system now on the market with properly coded
software for any small businesc application. However, - the
organization of the file system is of paramount importance in
obtaining performance in any file intensive application.

The other programs appearing in the directory are utility

programs and are described in the Utility Program section of this
manual.

-63-

OS—SS0 FILE DIRECTORY
MAME TYPE ACCESS . ARDRESS LEMGTH

DIRECH OTHER NOME Py SRt
BERECH BRSIC WMRITE ;
CRERTE ERSIC WRITE
IR EASIC WRITE
DELETE ER=IC WRITE
FACKER BERZIC WRITE
COFIER BASIG HRITE
FEMAME EAZIC WRITE
FPRINT ERSIC MRITE

2
-

w3 L0

R L LR IR O (R

AL ¥
SRRY 1 s B T

CORPYFI BR=SIC MEITE SEY

FLLIME BR=IC MRITE FESgd
CHAMGE BRSIC HMOME HEVLE
LOADIE BRZIC MOME BYRaE
LOADSS BARSIC F4CIHE 5V

SYELIR BRZIC WRITE 1R
MULTI BASIC MIRITE 18441
BEidsd BASIC Fh 12e

pUse BASIC RAM et et
BLISZ BRZIC Rl 1ZRS50E
ACCL LATAH Frebd 12202
FCCE LATA Fehl 1E&7ad
FHOME BR=IC Rl =
FHODIR DATA Rl
LABLE BASIC Rl
TLABLE DAHTA Rl

SEE
S5
A

T 17 "y
N

1a5435 BYTES FREE
2% FILES DEFIHNED OF &3 POSSIBELE

16 FEM www BASIC EXECUTIVE
26 REM

IM REM SETUF CONSOLE IMFUT DEYICE
46 In = FEEK (116643

41 REM

42 REM LOCKUR SYSTEM

43 FLAG 21: REM IMFUT ESCAFE

44 FOKE 267 55 POKE 14635 8: REM

S FOKE LLlEE&, 270 TH-10

SE REM

REM SETUF CONSOLE OUTPUT DEYICE
T = FEEK (116850

FOKE L1886, 270TH~-10

RET
FRINT
FRINT
REM

= T
MOURIOURRACLRE WY

F
ot
—

l.‘

FRINT
"OS-ESU WL, 1t

i

[y b= o
AR Y]

S
s

oF 1o

POKE @i4Z2, @ FOKE &14353, 6
REM '
REM
FEM
FRINT:
IF FuU%
IF FuU=
IF Fux <

Y
!

il R N

GET USER FUMNCTION

MU
SRR

1

P ol N e DT e i

IMFUT "FUNCZTION " FLE
"DIR" THEM RUM "DIR"
"PDLIR" THEM RLIN

WLIMLOTEY 3070 2En

=Te]
15

%]

tn

LML OCE, SYSTEM

1 REM

B OFLAG 22 REM INPUT ESCAPE

B POKE 14a33, 285 FOKE 2673, ©a

-
L
-
=l
.
ol
=y
=y
-
Py
-
=
=
e

3=l 0L
[y

REM SETUF FOR MASTER 22600 SYSTEM

FEM

CTRL £.0

"DIR", 42

CTRL S0

PRINT FPEERCLZZ I AFEER CLEE D2 50— 57

~bh-~

VELWTES FREE"Y

FRINT

10
15
20
30
35
40
50
70
80
90
95
98
99

BUS1

OPEN"ACC1M","WANAN", 1
PRINT

INPUT "ACCOUNT NO.":X

IF X<0 OR X>199 THEN GOTO 20
INDEX<1>=X#20

INPUT "CHECK(C) OR MODIFY(M)";A$
IF A$="M" GOTO 100

INPUT%1,A

INPUT%1,B

PRINT "ACCOUNT";A,"AMOUNT";$R, B
INPUT "ANOTHER(A)";A$

IF A$="A"GOTO 15:GOTO 200

GOTO 200

100 INPUT "NEW AMOUNT";Y
110 PRINT%1,X

120 PRINT%1,Y

130 GOTO 95

200 CLOSE

-66-

10
20
30
35
Lo
45
50
60
70
80
90
100
110
300
302
310
320
330
340
350
380
390
4oo
410
420
430
500
502
505
510
52¢

PRINT "ACCOUNT DESCRIPTIONS™
INPUT "ADD(A) LIST(L) OR NEW(N)";A$
OPEN"ACC2", 1

IF A$="N" GOTO 500

INPUTY1,Z

INDEX<1>=10

IFA$="A"GOTO 300

INPUT%1, A

INPUT%1,D$

PRINT A&;TAB(10);D$

IF INDEX(1)<Z GOTO060

CLOSE
END

REM

INDEX<1>=2

INPUT "ACCOUNT ";N
INPUT "DESCRIPTION";D$
PRINT%1,N

PRINT%1,D$

Z=INDEX(1)

INPUT "ANOTHER(A)";X$
IF X$="A" GOTO 310
INDEX<1>=0

PRINT%1,Z

CLOSE

END
INPUT"PASSWORD" ; A%

IF A$<OMPASS"GOTO 420
2=10

PRINT%1,10

GOTO 300

-67 -

BUS3

10 OPENM"ACC1I™, 1

20 UPENM"ACC2%M.2

30 INPUT%2,2

40 INDEX<2>=10

50 INPUT%2,A

50 INPUT%2,A$

70 INDEXZ1>=20%A

80 INPUT%1,B

90 IF A<>B THEN PRINT"ACCOUNT ERROR":CLOSE:END
100 INPUT%1,C

110 PRINT A;TAB(10);A$;TAB(50);5R,C
120 IF INDEX(2)<Z GOTO 50

130 CLOSE

-68-

10

20

30

40

‘ 5

\ 50
60

65

70

80

90

100

110

120

130

W EW-—200
210

220

230

2U0

250

260

270

280

APD =400
410

420

Xl ~100

PRINT"PHONE DIRECTORY"
OPEN "PHODIRM,1

PRINT

INPUT "NEW(N) FIND(F) ADD(A) EXIT (E)"; AS$
INDEX<1>=0

IF A$="N" GOTO 200

IF A$="A" GOTO 400

IF A$="E"™ GOTO 1000

INPUT "NAME"; B$
FIND B$,1

IF INDEX (1)>1E8 THEN PRINT "ENTRY NOT FOUND"
INPUT %1,C$

INPUT %1,C$

PRINT "THE NUMBER IS";C$

GOTO 30

PRINT"NEW DIRECTORY":PRINT

INPUT "NAME";N$

INPUT "NUMBER";M$

PRINT%1,N$

PRINT%1,M$

INPUT "DONE(D)";X$

IF X$<O"D" GOTO 210

PRINT%1,"END"

GOTO 30

FIND "END",1

IF INDEX (1)>1E8 THENPRINT "EOF :ERROR": STOP
GOTO 210
0 CLOSE : END

~69-

:GOTO 30

L Y]

Ty Oy O L1 L O AN
ST i v RN IR €2 B B o LS)

PRINT "MAILING LABLE DEMO PROGRAM"

PRINT:
OPEN A%, 1
PRINT

PRINT "FUNCTIONS"
INDEXRCIO>=0

PRINT "LISTLLO"
PRINT"ADD (A"
PRIMNT "EDITCED"
PRINT "NEWCND"
PRINT "ERITCX"
INPUT AR$

IF A%
IF RAY¥
IF A%
IF A%
IF A%
GOTO 20
INPUT"PRSSHORD": A%
IF RA${O"PASS"GATO 20
PRINTX1. 10

GQTO 29

PRINT "EDIT ROUTINE"
TIHNDEXC1>=0

INPUT "KEY WORD": K$
FIND K¢, 4

IF INDEXC(13>1E8 THEN
GOSUR 418068
GOsSUB 42a@
TNPUT "CHABNGECY
IF A$ = "N" GOTO 248
GOSUB 4320

GOsuB 1380

GOSUB 1448

GQsUB 1585

SQsUBR 41574

GasuB 1638

GosUR 4700

GOTO 29

INPUT ¥ L, E

PRINT
GosuB
GosUB
GOsUB
GozlB
GOSUR
Gosug 161@

GOSUR 41700

E=E+120

INDEXCL>=0

PRINT K1, E

THPUT "AMOTHER (% OR
TF Af="H" GOTQ =26
THDEXCLD=E

GaTO 526

INPUT X4, N

E=10

GosUB 1858

LO5UR 1z@0

R

] x L]
H N 1
1] E 1]
1} RN
1l L "

THEN
GaTO0
GaTo
GaTO
GoTO

200
380
1%1%
T08

o onou

1380
1368
1420
1480
1550

CLLOBE

r

INPUT "LABLE FILE": RS

END

PRINT “KEVMORD NOT FOUND"

OR No"; RS

"ADD LABLE ENTRYS A% DESIRED"

N RS

-70-

GOTO 3606

1

o

b

: WA

- LAY

~-71-

1688 RETURN

1640 INPUT "CODE FIELD";K$
1620 IF LENCK$>>9 GOTQ 1618
1638 PRINT : PRINT K$

164@ INPUT "RLRIGHTCY OR NX"; A%
16508 IF R$="N" GOTO 1610
1660 RETURN

1708 INDEX<1>=E

1710 PRIMT “i.N$

472@ INDEXLLD>=E+23

1738 PRINT X1,C%

1740 INDEXL4>=E+350O

4750 PRINT X4, 8%

1766 INDEX{A>=E+7D

17708 PRINT Xxi.M$

1780 INDEX<1>=E+100

1790 PRINT %1, 2Z3%

1800 INDEX<{1>=E+110

41846 PRINT %1.K#

1828 RETURN

Getting Started With 0S-65U

Place the accompanying disk in "A" drive of Challenger T,

IT or ITI with at least 32K of RAM and preferably with a

serial terminal. (0S8-65U does support the 540 video,

however.)

Reset the computer and type a D. After several clicks, the

message:

0S-65U Version Number
FUNCTION?
should come out.
Answer DIR (carriage return)
and a directory should be printed.
To RUN any BASIC program in the directory, simply type

RUN"PROGRAM NAME"

To place BASIC programs oOn disk, first CREATE a file for

the program with the CREATE program, then type NEW and

program in BASIC conventionally. Once the program is debugged,
type SAVE"PROGRAM NAME" , "PASSWORD" (password optional) to

store it on disk.

Once the program is on disk, it can be loaded without being run
by the LOAD'"PROGRAM NAME"command and can be loaded and executed

by the RUN"PROGRAM NAME" command.

~73-

S

To use a data file, first create it with the CREATE program.
Then, in any BASIC program use it by assigning that file a
Channel Number (1 to 8) with the OPEN"FILE NAME","PASSWORD",CN
commands. The file can then be operated on by the INPUT%CN, ...
PRINT%CN, ... FIND"STRING”gCN,INDEX{CN}, INDEX (CN) and CLOSE CN

statements in BASIC programs.

T

User Notes on 0S-65U

Lvery extended disk BASIC is in many respects a unique
language with respect to file I/0. The following discussion
is aimed at the experienced computer user who has dealt with
several disk extended BASICS. It is basically a warning

list of the little "gotchas" that can cause problems for
programmers until they become familiar with this specific
disk extended BASIC. The first and foremost warning is to
pay attention to error messages. Lach error message has
something important to tell you when an error occurs. Try

to resist the temptation to just go on when an error message
is printed out. Take the time to look up the error message
and figure out what has been done wrong. Beware of exchanging
diskettes mid-stream. 0S-65U does not have a "MOUNT" command.
The only problem that can be encountered has to do with the
fact that directory information for a disk is resident in RAM
memory whenever a data file is open. It is possible for the
directory information from one diskette to be in RAM after a
different diskette has been placed in the drive. This can
cause several problems; A good rule of thumb is whenever
changing diskettes, reboot the system. This will assure you

that the proper directory is resident in RAM at all times.

-7 5

N

The system is fairly crash proof with regard to diskette file
errors except for the‘casg of attempting to utilize a diskette
before initializing it or attempting to use a portion of a
C-D74 disk before it has been initialized. These conditions
can cause fatal crash to occur which will require a reboot

of the system.

Two subtle points in the file system to keep in mind both
have to do with using files both in sequential and random
access modes. One very important point to remember is that
the FIND command works from INDEX specified for a channel
or file to the end of that file so that if you want a FIND
command to operate over an entire file, be sure to set the
INDEX to zero for that channel before using the FIND
command. Likewise, it is very easy to find all occurrences
of a string in a file by first setting the INDEX to zero
and applying the FIND command in a loop which conditionally
tests for end of file. With this approach, all occurrences
of a particular string can be found. When using files in
both sequential and random access modes be carceful of the
accumulation of Luter-vcecord ovr inlar—cntry gacvbape., An
example of this problem can be demonstrated in the mailing
label program, LABLE, which dces not properly hdandle the
cituation. The LABLE program utilizes flelds or entrics

of 25 characters maximum ¥Yor name, company ndne, etoe,

=76~

The FIND command operates on this file in a pure sequential
fashion so that it "sees" sections of the file which are

not normally accessed if the entries are shorter than 25
characters. For example, consider a mailing label entry
name, John Doe. With the current program, if this entry

were edited to a smaller name such as John, the last name

Doe would be left over or left imbedded in the file between
the two entries. The normal LIST or PRINT commands would not
print out Doe but the FIND command could potentially find

the string '"Doe" when searching for Doe in some other context.
The solution to the problem is to make sure that the inner-
entry or inner-record gaps in files are always filled with
spaces or nulls. All files are filled with nulls upon
initialization and after repacking so the user must simply
always replace strings in é file with strings of the same
length. This can be accomplished by adding spaces to the
right hand side of the string. Do not attempt to accomplish
this by adding spaces to the left hand side of the string

because these will be stripped off in BASIC as lead in spaces.

77—

Appendix I

User Programmed D. sk T 2

The BASIC pr~ crammzr can perform disk I/0 operations by

following the stezs shiwn here.

These statem=nts nist be executed once to set up for

the transfers:

POKE 8778,192 : P7T XE §779,36 Points USR function to interface
subroutine

g-33,u40 Sets up ISR PUT in interface
subroutine

!

POKE 9432,243 : PO
POKE 9435,232 : PL.E ©-36,40 Sets up ISR GET in interface
subroutine

For each transfer —o r: performed, the following statements

must be executed:

CB=9889 Defines address of I/0
control block

DH=INT(DA/1677721% . >M=DA-DH*16777216 Place disk address into CB
DM=INT(RM/65536) . M=RM-DM*65536
DL=INT(RM/256) . JM=RM-DL#*256

POKE CB+1,RM : PC T (CIi-2,DL: POKE CB+3,DM : POKE CB+u4 ,DH

Q=256

POKE CB+5,NB-INT (. =/Q <0 : POKE CB+5,INT(NB/Q) Place number of
bytes into CB

POKE CB+7,RA-INT(. .5/Q =) : POKE CB+8,INT(RA/Q) Place ram address

into CB
DEV"A" Select disk device
RW=19 Specify read;

RW=1 for write

ER=USR(RW) Perform I/0 transfer
[

-78-

The user must have previously assigned values for the disk
address, number of bytes to be transferred and ram address to

the variables DA,NB and RA, respectively.

The maximum range of values for these variables 1is:

Floppy Disk CD-74 Disk
DA 0275367 0-72898559
NB 0-65635 0-65535
RA . 0-65535 0-65535

0f course, an adequate amount of ram must be allocated by the
user prior to performing a transfer.
If any error occurs, a non-zero error code will be returned
in ER. The following statements might be used for error
reporting:

IF ER ¢ GOTO 1000

1000 PRINT "##*# DEVICE A ERROR"; ERj; "AT ADDRESS: DA

1010 POKE 8778,208 . POKE‘8779,16 Set USR to function
call error .

1020 END
It is not necessary to retry disk transfers in an attempt to
recover from coft errorc; the disk drivers perform an adequate

number of retries before returning an errov code,

-79-

Appendix II

BASIC - DOS Interface Subroutine

The machine language subroutine which is used to interface
between BASIC and the 65U disk drivers is an example of how the
user programmer should code similar interfaces. An explanation
of the subroutine follows.

Sixteen bits of data are passed from a BASIC program as
the argument of the USR(X) call. To acquire this data, the
machine language code must JSR indirect through location 6 as
is done in the first line of the subroutine. This places the
16 bit data value into page zero locations FACLO (hex B2) and
FACLO+1. Since the DOS will need to use most of page zero and
BASIC's page zero and stack must be saved, the subroutine next
calls the swapper. This interchanges all of page # and 1 and
the registers X,Y and the stack pointer with those saved in the
swapper buffer at hex 4700. 'The registers and page zero and page
one currently in use are referred to as the "context'". There
are two contexts in the system, that of BASIC and that of the
DOS. User programmers should generally use the DOS context
which provides availablce page zero localbivas A-F, 50-9T, and
Cg-rF.

The subroutine next places the lLast device number specified
in a DEV statement into the transler control block and pushes
a common return address onto the Slaclk ter the PUT or GET call
to follow.

The parameter, X, passcd to this subroubtiune must be 2ero

for a disk read or one for a disk write. The subroutine tests

~80~

the parameter and branches to a JMP to the appropriate routine.
The calling sequence for these routines is a JSR followed by

a .WORD specifying the address of the transfer control block.
(The disk address, number of bytes and ram address must have
previously been POKEd by the calling BASIC program.)

After a return from the PUT or GET routine, another JSR SWAP
is executed to restore BASIC's context. Then any error code
returned by the disk drivers is returned to the calling BASIC
program by loading it into the Y (low) and A (high) registers.
The indirect JMP through location 8 returns control to the

BASIC interpreter.

-81~

a1t}

O
P
o
e
A

i BRZIC - pAS DRIVER INTERFHCE SUBROUTINE

RN
JOURE I

i

oV SO0 I
y O

FRCLO
LISCH
DUN
GET

,_
X
-~
X
=

[n]
=
0%
—
=

-

i IR U
[V
o

AR IR NI

[as]
A%
I o G
=
'—l.
=
[o)

R
L

1
1S N EA | B | I 1}

[GIEIS[uIn PUT
B OHENRG SWAF

]
L

1
it

[Sa I Wy R BRSO B

FAREE SWAFE
168 B8EH i

118 24CcH o= F240H

120 2400 i

LEM R4CH 2HES2d BRED0DS JSR GETVAR GET FHERAM INTO FACLG

LdE 2403 289749 JSROSHAF SWITCH TO s SONTERT

1568 24086 [RDe82G LDA DISCN SETLP

166 2402 ShARLZs STH DUN LEVICE

178 2400 i

188 24CC 24 LDA #USRERAZ2E SETUR

193 24CE FHA COMPOM

SRR 240F (I LOA #UERKE-Z22 RETUREN

21 2401 FHA ADLRESS

el R by i '

238 2402 ALR24T LOA FRCLO+SWAFE GET FACLO FROM BRSICS CONTEST

J4E 24DS FEAT BER URERD ZEFO MEANS RERD DIZE)
25 2407 ;

02407 « JHF PUT WRITE CI=k

g 240A 9CERZE URERD JIMP GET RERAC

32400 LSRR = =l RETURM ADR FOR STACK

298 2400 L = USENE- 2564256

08 2400 AL2E WORD DU

e 240F ;

I20 MDF 2anvda JSR SHAR BRACE T BASIC S COMNTEST

X0 24EX AR TAY ERRFDOR CODE TO Y CLOK:

4@ 24E3 R7AA LA #4 ERROR CODE HIGH 1[5 ZERD

350 24E3 aCosan JHME (3 RETURM TO BASIC IHTERFRETER

ZEE 24ES H

IFE Z4ES ACASER GETYAR JMF
Iam 24ER i

+ DT

[ERY A Ay s PN]

o

TO GET PARAM FROM BAZIC

,.
(w3
—

o - O foenz) (Foecd
(LML CUmWEL #5 b€ GEATcH SOACE STHEWG A 1906 (fze82) (Feecs >

-89-

Appendix III

0S-65U Passwords

All passwords u.sed in the release version of 05S-65U are

defined on this :age.

Utility Program Pauswords

All utility programs with limited access (other than R/W)

are assigned the passiord PASS.

The PACKER requires a p.ssword prior to initiating the disk

packing operation. This nassword is PACK.

The COPIER requires a pasmvord prior to initializing the

CD-74 disk. The password i< 3300.

Systems Program Passwords

The SYSDIR program password for . 2lection of system 1, the
Master system, is SECRET. The s.u.»nle user systems 'USERL, 2,

and 3 have passwords PW.

~83-

g
1

S

Appendix IV

Changing Size and Location of the Disk Directory [

0S-65U system disks are normally allocated as follows:

Sector Disk Address
g) System boot (initialization) code
1 3584 System
2 , 7168 "
3 10752 "
4 14336 "
5 17820 "
6 21504 "
7 up 25088 Files

The first file within the "Files" area must be the directory
for the rest of the files on the disk. The "System" area containsE
a directly executable copy of all the RAM resident code in the
65U system. Thus, each 65U disk normally holds a complete,
fully operational system in addition to utility program and user
files.

Since the directory file must be the first file in the file
space, it's size - and the number of files that it can hold -
is limited once the directory file has been created. Release
versions of 65U contain a directory 1024 bytes in length which
can hold 1024/16-1 = 63 additional file entries. (16 bytes per
entry). If this number is insufficient, it is possible to

build a system with a larger directory by following these steps:

-84~

Changing the Size of the Disk Directory:

1.) With the COPILR utility program, fully initialize a new
disk and copy the System portion of 65U to the new disk.
2.) Using the CREATE utility program, create a directory file
on the new disk with the following éharacteristics:
Filename: V"DIREC®"
Length: Speéify a value equal to 16* (number of files)
+16
File Type: "Other"
Access Rights: "None'
Password: As applicable
3.) Proceed to create files on the new disk to accommodate BEXECH
and those utility programs and user files to be included
on the disk.
4.) Use the COPYFI utility program to transfer existing programs/
data files to the new disk.
It is also possible to create a "data disk" which has only
files storage. To do so, follow these steps:
Changing the Location of the Disk Directory: 41f75§“76;7

PAGE 30
1.) With the COPIER utility program, fully initialize a new disk

and—eepitheo. Syslemeperntilopeslmbbld—tor=tIr=rmewr sk

2.) Run the CREATE utility program from an ~xisting 65U system,
but type only a carriage return in response to its first
question. This leaves the CREATE program in RAM and
permits the following change:

3.) Enter the disk page address (disk address/256) of the new
directory as thrce bytes (low, mid, high) into locations

~86~

STNAD
c -
&

6.

9899, 9900 and 9901, respectively. For example, the
lowest address that can be used for a disk directory is
3584, This is disk page address 14,0,0 (low, mid, high)
and would be entered this way:

POKE 9899,14% : POKE 9900,0 : POKE 9901,0
Note that since the usual disk page address of the directory
is 98,0,0 (25088/256), the second and third bytes are
already zero so the corresponding POKEs can be omitted.
Run the CREATE program in RAM by typing only:

RUN
Proceed to create a directory file on the new disk with
the following characteristics:

Filename: '"DIREC®"

Length: Specify a value equal to 16% (number of files)

+16

File Type: "Other"

Access Rights: '"None'

Password: As Applicable
Proceed to create files on the new disk as needed. These
may be either data files or program files; however, any
program files must not make reference to the Systems portion
of the disk since it does not exist.
Mote that use of any LOAD, SAVE or OPEN commands (whethor
in the direct mode or as pavt of a program) must be preceded
by specifying the appropriate directory papge address. T[or
example, to return toadisk with the dircctory at the usual
address, enter:

POKE 9899,98
as well as the DEV unit select command.

~86-

Appendix V D58y
)

Level TT

0S-65U, Level II provides, in addition to the Level I
functions, an interrupt driven real time clock and up to 16
terminals with interrupt driven character input. The real time
clock is set by the operator at system initialization and can
be directly accessed from BASIC. It provides vear, month,
day, hours, minutes and seconds. A countdown timer is also
available. Tt can optionally be used to time-out an event and
cause a real time monitor program (RTMON) to be executed. Each
of the up to 16 terminals has its own character input buffer
into which data from the associated terminal is placed whenever
an input character interrupt occurs. Input of a carriage return
causes the input line to be passed to the BASIC program waiting
in an INPUT statement. Meanwhile, characters being input from
the other terminals are input to their own buffer when typed,
so each terminal user appears to have almost exclusive use of
the machine.

This system is designed specifically for multi-terminal
transaction processing and general inquiry under a BASIC program.
A demonstration program, MLABLE, is provided as a sample inquiry
processing system.

The LevelIl system operates very efficiently on CD-7h based
systems and can be used with some speed degradation on floppy
only systems. Required hardware is the real time clock ontion
on the 470 floppy disk controller and a 550 or CA-10X board

with the desired number of terminal interfaces.

-87-

Level TIT

08-65U, Level III is a true multi-programming, multi-
tasking real time operating system. It features a real time
executive program residing in a special 4K memory block at
hex D000 and supports up to 16 totally independent tasks
running in separate memory partitions. Any of these 16 tasks
can be a Level II or Level I system or can be machine code,
assembler or other non-operating system related functions.,
Required hardware is a real time clock, 4K of RAM at hex DO00CO

and multiple memory partitions as desired.

G S~-6gd

PDiRe c¥ P Newe 2 <08 % [o2Y
BExeEe & B U R 26 ((2 35 Y
¢ REATE B s 1 2964 6 $ (92
bR ® w i 3788¢ . BSRY
oeuzre P W ik iz 322%
PACKER % w e Yy §o0 S 192

-88~

